
MC2/144

Part 2:

Section 2:

Chapter 1:

Chapter a
ot

PROGRAMMING MANUAL

PROGRAMMING LANGUAGES

S.A.P. :SYMBOLIC ASSEMBLY PROCRAM

CONTENTS

INTRODUCTION

1.1 General

1.2 -Elements

1.3 Separators

1.4 Six bit Internai Code

1.5 Punching Rules

ADDRESS FORM

2.1 Absolute

2c1.1 zZone-Relative

2.1.2 Page Relative

Identifier

Relative to Identifier

ohae

Lo />

my A. Gough

JOZ2 SAP

Page

W

R
m

m
e

ee

o
k

wk

h
o
b

Page (i)
(Issue 1)

900
MC2/ 144

Pt. 2 Sec, 2

Chapter 3:

Chapter 4:

Chapter 5:

Chapter 6; .

Page (ii)
{Issue 1}

BLOCKS

3,1 Global Identifier List
3,2 Local Identifiers

WORDS

4,1 Integers

4.2 Octals

4.3 Fractions

4.4 Special 1

4.5 Special 2

4.6 Special 3

4.7 Special 4

4.8 Instructions

4.8.1 . Geneval

4.8.2 Store-Addressing Functions

4,8,2,1 Literais

4. 8.3 Short Jumps

“4, 8.4 Modifier Jumps

4.8.5 Shifts

DIRECTIVES

5.1 Start

5.2 Skip

5.3 Prograrnme Pointer

5.4 Data Pointer

5.5 Patch

5,6 Location of Literals

COMMENTS

oO
o

OD
O

OW

OD

®

10

12

13

13

14

15

16

18

18

18

19

19

20

22

Chapter 7:

Chapter 8:

Chapter 9:

Chapter 10:

Chapter 1 l:

Chapter 12;

Chapter 13:

900
. MG2/144

Pt. 2Sec. 2

TRIGGER — 23

OPERATING INSTRUCTIONS 24

MISCELLANEOUS ERRORS

9.1- Locations reserved for Tape Leader 26

9.2 Programming through a 4K block 26

9.3 Data page overflow 26

ERROR INDICATIONS 27

RESTART FACILITY 29

DUMP. FACILITY, GORRECTION COMPILATION 30

STORE USED 31

. Page (iii)
{Issue 1)

900

MC2/144

Pt.2 Sec.2

Errata

In the first issue of the S,A.P. assembler, the following restrictions

should be noted. These restrictions will be lifted in later versions,

(1) Page-Relative address Forms (2.1.2) are not permitted,

(2) Shifts (see 4.8.5) must be written in the form 14;tn or 14 5-n.

(3) After an error (except EO amd E1l&) the assembler wili stop.

Continuation is not possible.

(4) When the tape of 902 S.A.P, is being loaded.. it will stop

several yards short of the end. The initial instructions key

MUST be used again to load the last section of tape.

Page (iv)

(Issue 1}

900
MC2/144

Pt, 2 Sec. 2

_Chapter 1: INTRODUCTION

1 General

The 102C/902 Symbolic Assembler Programune

(S.A. P.) enables programmes to be written in a modified form of machine

code which has two main advantages:

(i) Store locaticns may be referred to by name rather

than absolute addresses.

. (ii) it is possible to write instructions using constants

without specifying where the ccastant is stored.

Programmes written in S,A,P. cude sre assembled using a

two-pass system whereby the source tape is loaded into the computer twice,

and on the second pass a binary tape of-the programme is produced with a

parity and sum-checking loader at the head. This tape can be entered into

the computer by meang vf the initial instructions.

1.2 Elements

The following elements are permiited ina S,A.P.

programme, andi must be spaced from each other by at least one separator:

Words

juabels

Directives, including patches

Global Indentifier Lists

Coruments

Trigger

1.3 Separators

Permissable separators are:

Space

Tab

Newline

Page 1
(Issue 1)

900

MC2/144

Pt, 2 Sec. 2

There js complete page layout freedom except that there

must be no more than 95 characters.on one line. However the separator

‘Newline’ or 'Linefeed' is not permitted inside an element other than a comment

or global identifier list.

1.4 Six bit Internal Code

S.A, P,. operates internally in a 6-bit code, which

includes the following characters, all of which are common to 920 and 903

Telecodes: - ‘

I-etters AiozZ

Digits Qto9

Layout characters

'Tab! 'Space! 'Newline!

Printing characters

peg gte*] =

() [] H&E .

Stopcode, (i.e. Halt}

On input; a-z% are stored as A-Z
Y

Tab (920 Flexowriter) i Are stored

Horiz., Tab (903 mecoweiterf as 'Tab!

‘Newline (Flexowriter) } Are stored

Linefeed (903 Teletype) i as 'Newiine!

Blank
Are

Erase
ignored

Garr. Ret. ($03 Teletype) j :

Most characters not listed above are stored as

"impermissible" and give rise to error indications.

Page 2

(Issue 1)

900
MC2/ 144

Pt. 2 Sec. 2

On output:

If in 903 code: 'Tab' is punched as 'space!

‘Newline! is preceded by Carr, Return.

Impermissibles are punched as ‘space’.

1.5. Purching Rules

A programme may be punched on one or more tapes.

Each tape must end with at least one sepacator and stopccde; tapes may be in

1, S, O, code (7 track plus parity), 903 (4100) telecode or 920 (503) telecode.

Blanks, erases and Carr. Ret's (903 Teletype) will be

ignored and, apart from these characters, the first churacter of a tape must

be Newline or Linofeed (903 Teletype). When punching programs on 1S, O,

code equipment the symbhol\ (reverse slash) must be used in place of &.

Page 3
(Iscue 1)

900
MG2/ 144

Pt, 2 Sec. 2

Chapter 2: ADDRESS FORMS

Throughout the programme the programmer mey refer to a

store location by any of the following forms:

(a) Absolute)

(b) Identifier

(c) Relative to identifier

as describdd below.

2.1° Absolute

There are two forms of writing a known absolute

address:- -

2161 Zone -~elative

Form A; B

. Where A and B are unsigned decimal

integers, and:

O< A < 4095 O< BS-7

This specifies address A.+ 4096B

Example; 20; 1 refers to the location with

“decimal address 4116 {octal address 10024)

2.1.2 Page Relative

Form C #D

Where O< CK 127 and OK Deg 255,

Thus specifies address C + 128D

Example 20 * 1 represents the decimal address

148 (octal address 00224).

2. 2. Identifier

A name invented by the programmer consisting ot up

to 5 letters or numbers commencing witha letter. Such a name is calied an

Ideritifier. (More than 5 characters are permitted, but they will be ignored).

Page 4
(Issue 1)

900
MC2/144

.Pt. 2 Sec. 2

An identifier may be located in two ways:-

(a) The identifier may be used as a label, by

inserting the identifier (followed by a

separator) at any.point in the pregram. Note

that instructions and data (e.g. constants,

work space locations and skips) may be

. labelled, and the Assembler docs not distinguish

between instruction labels and date names.

The identifier is then associated with the

address of the location inte which the next.

word would be asser:bied. Note also that

more than one identifier can label the same

location, and that the ideutifier is located

" whether or not it is actually followed by a

word,

(b) Alternatively an identifier may be located hy

writing it, folloved immediateiy by = and any

located available address form.

e.g. JIM=0;6

FRED=JIM+1

The identifier is then associated with the

address written to the right of the equals sign.

Note that this does not mean ' make the content

of JIM become equal to 0;6".

2.3 Relative to Identifier ;

Any identifier followed by a signed integer in the range

+2047, This will NOT be interpreted MODULO 409, i.e. if identifier FRED

labels location 4090;6, then FRED + 10 is 4;7 not 4;6.

Page 5 |

(Issue 1)

900

MC2/144

Pt. 2 Sec. 2

Chapter 3: BLOCKS

A §,A,P, programme will consist of one or more blocks.

3.1 Global Identifier List

Identifiers will be classed as Global if they are to he

used in two or more blocks. Each block should start with a list of global

identifiers used in that block,

The global identifier list must be enclosed in square

brackets [and] and each identifier must be separated from the rest by at

least one separator.

Example

[START ERROR Wl VELOC]

A global identifier must.be located (see é. 2.) once

and once only in one of the blocks in which itis globul. Uulocated globai

identifiers will be indicated by an error message at the end of the last block

of the program.

3.2 Local Identifiers

An identifier which is not included in the global list

of the block in which it appears is termed a lecal identifier, ‘To avuid

confusion the trained programmer should avoid using that identifier in any

other tlock, However it is perfectly legal for an identifier to be used locally

in several blocks, it will have a different meaning in each.

’ The same identifier may be used globally ano locally

provided that it does not appear in the global identifier list of any block

using it locally.

An identifier is said to be available at any point ina

programme if it appears in the global list for the current biock or is local

to the current block.

A local identifier must be located (see 2.2) once and

Page &
(issue 1)

_ 900
MG2/144

Pt. 2 Sec. 2

once only in the current block. Unlocated local identifiers will be indicated

at the end of a block.

_ The end of a block is indicated by the global list of the

next block, or by a 'trigger',

Page 7
(Issue 1)

200,
MG2/144
Pt. 2 Sec. 2

Chapter 4: WORDS

Words are the basic elements of a S,A.P, programme. After

assembly each S.A, P, word occupies one store location in the computer.

Words inay be written in-several forms, i.e.

Integers

Octals

Functions

Special I

Special 2

Special 3

Special 4

Instructions

All these forms are used to seta pattern of 12 kits ina

computer word, The different forms are provided for the convenience of the

programmer, for flexibility in writing and altering programs. In the following

“descriptions the convention Wd {n] represents bit n of the word to be

formed. (Wed [1] represents the least significant and Wd [12] the most

significant binary bit), AF, AF1, AF2 represent any of the address forms

described in 2,1 to 2.3. AF[n] represents bit n of the 15 bit address

associated with AF,

4,1 Integers ;

In the range + 2047 to - 2647.

Examples +10 -200 +0

(If the value -2048 is required it must be punched in

octal form ie. &4000),

4.2 Octals

'&' followed by up to 4 digits in the range 0-7. Note

that, for exarnple, '&6' is taken to mean '&00U6'

Examples: &3777 &0036

Page 8
(issue 1)

900
MG2/144

Pt. 2 Sec. 2

4.3 ¥ractions

In the range + .9999 to ~ ©9999,

Examples t.5-, 02

4.4 Special 1 ;

It is suggested that 4.4 to 4.7 {Specials} are ommitted

on a first reading of this manual. : ,

Special 1 is written in the form "£AF" where AY

represents any address form. The word is then the tiurnerica! value of the

specified address, Modulo 4096, that is

‘Wd [1-12]: = AF [1-12]
Examples: £FRED

£FRED+26

£23731 "(The same value as +237)

£4095;0 (The same value as -1)

The address form is useful for loading the B register

with the address of ‘a word which cannot be addressed directly.

Example of use: (The section 4.8.2 on 5. A.P.

ilterals should be read before attempting to follow this example), If ARR is

an array in the first zone of store (starting at 1000;9 say) then the following

instructions (placed anywhere in store) will pick up the contents of ARRT10

and store them in ARR+20. ,

0. ZARR

—€ 0:10

G6 £ARR

5 0:20

4.5 Special 2 : :

Of the form "£AF/" where AF is any address form.

lg AF" is formed as for special 1, then bits 1 to 7 are removed by the

Assembler. This gives the address of the beginning of the page referenced

by AF.

Page 9
(Issue 1)

900
MG2/144
Pt. 2 Sec, 2

i.e Wa[l-7] := 0

" Wa[8-12]:= AP [8-12]

Example £FRED/

This special is useful setting the modification register,

in particular for saving space by using common literals to access different

variables. See 4. 8.2 for a description of S.A. P, literals. If address form

FRED+1000 is used then the increment (+1000) is added to the address of

FRED before the Assembler removes bits 1 to 7.

Example of use:

. If TIME, VELOC, ACCEL are variables in zone 9, ‘and

all in the same data page (not page 0),say: :

TIME=512;0
VELOC=513;0 —

“ACCEL=514;0.. *

. then the following ‘two sets of instructions placed anywhere in store will

reference these variables, but the set on the left will generate 3 literals

whereas the set on the right will use one comrenn literal with an actual

value of +512.

0 £TIME 0 £TIME/
4 0:0 4 [TIME
0 £ VELOC 0 £VELOG/
40:0 - 4 [VELCC
0 £ACCEL | 0 £ACCEL}
4 0:0 4 [ACCEL

See 4.8.2 for the meaning of 4 /TIME etc.

4.4 Special 3

_ Of the form "<AF1 AF2>" where AF] & AP? are any

address forms, spaced by one space character only.

Page 10

{issue 1)

900
MC2/144

Pt, 2 Sec. 2

This is defined by

w [1-8] := Arz [8-15]

w($-11]:= AF1 [13-15]

W [12] := 0

This. special is useful for setting the pointer registey

and for sub routine entries,

Examples

<START 0;0>

<0;0 FDATA>

<INT IPOINT >

If the address form 2. 3 is used (e.g. FRED+1000}

then the increment (+1000) is added to the address of FRED before the

assembler removes the appropriate bits from the address form.

Examples of use

(1) To set up a pair. of words containing the 15

_ bit address of a label for an indirect jump or

sub-routine entry, e.g:

ASTART <START 0;0>

; ESTART

Then 1] ASTART would cause program control to be

transferred to the instruction labelled START,

wherever that was assembled in store.

(2) To load the pointer register. The instruction

sequence: .

14 1:65

<0;0 FDATA>

will toad the pointer register (D register) to point ta

the page in which FDATA is located,

Page J1

(Issue 1}

900
“. MC2/144

Pt. 2 Sec.2

(3) To set up interrupt starting data in locations

128 etc. In locations 128 ana129 set:

<INT IPOINT>

£INT

Then when interrupt occurs control will be transferred

to the instruction labelled INT, and the D register

set to point to the page in which TPOINT is located.

The identifiers used in specials must be "available"

but need not be "located"! at the point of the programms,

4,7 Special 4 ;

Of the form "ZAF =", this may only be used as a

literal in the construction of "Long jurmps'". A‘#* may be any address in the

same 4K block as the instruction using the special. It is used to set the

modification register for jumping to AP, "ZAPF = '' will in genenal bea

multiple (+) of 256, except where the difference between AF and the address

of the jump instruction is 128 + ‘a multiple of 256 in which case "£AF =" will

be an odd multiple of 128.

See 4. 8.4 for a description and exainple of the use

of Special 4.

4.8 instructions

May take several forms. Vhese coromence with a

function in the range 0.15, folitowed by af least one separator and a

permitted address form..

(In the forms listed in 4, 8.2 below only;the function may be preceded by a

"/"),
The identifiers used in addresses must be "availabie

but need not be "located" at that point in the programme.

Page 12
(Issue 1)

300
MG2/144

_ Pt. 2 Sec. 2

4.8.1 Machine Code Form (Decimal Address)

Any instruction may take the form,

¥F M:N where F, M and N

represent decimal numbers, and:-

F is the function-in the range 9-15

M is the mode, 0 or }

N is the addrecs in the range (-127

'. F must be followed by at least one separator

M, colon and N must not be separated.

i.e. Wad[l-7] := WN

wa[s] :=

Wadl9-l2k= F

Examples; 4 0;20

15 1:127

4.8.2 Store - Addressing Functions

Functions (other than velative jumps) which

address the store may be written as :

FA or /F A

where F is the function in decimal, i. e.:-

, 0, 1, 2, 3, 4,5, 6, 10, 11,12 of 13.

and A is.one off:- ;

(a) An address form with a walue in the

range 0 to 127,

e.g. 4 10;0

(b) The form '/AF' where AF is any address

form, and /AF represents the least significant

7 bits of AF (i.e. Wa({1-7] := AF li-7]

e.g. 5 /FRED

Page 13
{Issue i)

WY

900
MC2/144

“Pt, 2 Sec. 2

(c) Any literal form, see below

eg. 442

If F is preceded by / then the mode bit will

be set in the instruction (i.e. Mode = 1). If F is not preceded by / then the

"instruction will always be assembled with Mode 0.

4.8.2.1 Literals
, The 8,4. P, Asserabler provides a

_ facility for making constants available in a program aud allocating storage

to these constants autornatically. The programmer simply writes the

constant into the address part of the instruction. Such cons‘ants are known

as "literals" (or "S,A, P. literals"), (Note that 902 roachine code does not

chave a literal address form, S.A. P, literals are always placed in a separate

12 bit word, and the address of this word is inserted in the instruction

address (bits 1 to 7) by S.A, P.)

A literal mzy be written in any of

the woxd forms listed in Chapter 4 except instructions (4. 8).

Examples of literals used in

instructions: -

4 +2

2 -1000

6 &0777

124.5

4 £FRED

0 £FRED/

4 <0;0 DATA>

0 £LAB=

-Literals may only be used after

functions 0, 1, 2,4,6,12 and 13. This restriction gives some safeguard

against misuse and accidental overwriting of literals, but it is still possible

Page 14
(Issue 1)

900

MG2/144

Pt. 2 Sec. 2

for a program to corrupt literals by mistake.

‘ If the function of the instruction is

preceded by / then the literal will be allocated an address ou the current

data page. If it is not preceded by / then the liverai wiil be placed in page 0.

(See 5.6 for further details).

Example,

to load +1 into the A register the

programmer could either; ,

fa) arrange to place +1 in some known location

aay 60;0 and write: .

4 0:60 (Absolute address)

(0) or he could write C1 +1 in his data space and

write instruction:

4 Cl (The exact location of Ci need not be
known}

(c) or he could write:

4 +1

This is easier to read and under-

stand than (a) or (b) and +1 will automaticaily be allocatea space and shared

with any other literals with value +1, & 0001, etc..

4.8.3 Short jumps (Functions 7,8 and 9). Jumps to

addresses which are within + 127 words of the current address may be

written either as;

(a) Fjtn oor F 5-m

where n and m are single digit decimal numbers. and

F is a function digit 7,8 or 9.

Page 15

(Issue 1}

900 ;
MC2/144 : - _ Examples: 10 Y¥

Pt, 2 Sec, 2 10X .

9 5 +2 (Jump forward 2 if A=0}

8 3-3 (Jump back to 10 Y)

(b) F AF

where AF is any address form representing an address

within + 127 of the current address, The mode bit for

a-jump back is inserted automatically (note that, /F AF

is illegal in this case). ;

- Examples 8 LAL

7 START +1

4,8.4 Modified Jumps ("Leog Jumps")

Functions 7, 8 or 9 may be used to transfer

control to any address in the current zone i.o. the block of 4096 words in

which the jump instruction is placed. The special 4 provides a convenient

means of writing jumps which are likely to be more than 127 words long. To

jump to any address form AF (normally a label) write:-

6 £AF= 6 £AF= 0 ZAF=

8 =AF 7 =AF 9 =AF

Examples:

0 LABS 0 £STARTH=| @ £END=

g =LAB | 7 =START+1 | 9 =END

The rode bit for a jump backwards is inserted automatically, The jump

instruction 7,3 or 9 must not be preceded by /. However the literal LAF=

may be placed in the current data page by writing

/0 £AF=

4.8.5, Shifts

Shifts may be conveniently written in the form

14 #44nor 14 4A-n

where nis aninteger. The range of this instruction forin is from 14 32

though 14. #+0tol4 4431 This instruction form irnplies ‘multiply by 2/Nrn"

Page 16
(Issue 1)

900
MC2/144

_ Pt. 2 Sec. 2

shift left n places if positive sign. 14. #4n
or .

shift right n places uf negative sign. 14 #-n

Page 17

(Issue 1)

900
MC2/ 144

' Pt. 2 Sec. 2

Chapter 5; DIRECTIVES

5.1 Start

The first element of a programme must be the directive

Ns START"! followed by a stving specifying the hardware in use.

Examples:-

*START; 22

*START;21

‘ oe os 1 ,
The first and second digits are 4096 x the store cize

of the COMPILE & RUN computers respectively, and this may be in the

range 1-&. Thus in the 2nd example above, 5, A. P. is being used cn a 8192

word computer, to compil+ a programme which will run on a 4096 word

computer.

Separators are not permitted within this directive.

5.2 Skip

The directive '>N -vhere N is an unsigned iteger, called

a skip will cause N locations to be left undefined (for workspace), (N< 4095).

Exarople: > 20

5.3 Programme Pointer

Hie PROG" Locate words from the address held in an

Assembler variable known as "Progpte" onwards, incrementing ''Progptr"

by one after each word, and by the appropriate amount after each skip.

There are two forms of *PROG directive

(a) *PROG

causes words to be located from the point previously

reached under the last *PROG directive. If *PROG

has not been used "'Progptr'! will have value 256;0.

(b) *PROG = AF

where AF is any located available address forrn,

Page 18
(Issue 1)

900

MC2/144

Pt. 2 Sec. 2

‘Progptr' is then set to the value of AF

Example: *PROG=0;1 ,

5.4 Data Poinier

Directive *DA'A causes words to bs locatea from the

address held ip the Assembler variable known as Dataptr, onwards. After

this directive 'Dataptr'' is incremented by one after each word, and by the

appropriate amount afier each skip.

There are two forms of *DATA directive.

(a) *DATA ;

{b) SDATASAF

where AF is any located available form. In (a) "Datapt-" takes its previous

value (initial value undefined). ‘In cage (b) 'Dataptr'' becomes equal to the

value of AF .

Example; “*NATASDFRED

(DFRKED must have been located before this directive

was reached,e.g. by DFRED = 512;0).

-Note carefully that the S.A. P, variable "Dataptr" has

no relation to the hardware D register (Pointer register) at Assembly time

or run time. However it may be important for the programmer to forma

relation between the "Dataptr'' value at assembly time and the value actually

loaded into the D register at run time (see 5.6)

5.5 Patch

"PAF" locate words from the address specified by AF,

onwards. AF is any located available address fo1m:

Examples: * 560;2

PSTART+20

This facility is a directive to stop placing words consecutively from the

Y
address held in ''Progptx" or "Dataptr" but to place them consecutively from

the address indicated by the patch. At the end of a patch sequence compilation

Page 19

(Issue 1)

900
MC2/ 144

Pt. 2 Sec. 2

of the main programme can be continued by the directive * PROG or * DATA.

5.6 Location of Literals

S.A. P, will locate literals in Mode 0 instructions from

127 downwards. (i.e. in page 0).

Literals preceded by a Mode 1 instructions (e.g. /4 +1)

will be located from the top of the 128-word page indicated by the current

value of "Dataptr", raodulo 128 (i.e. the current data page).

It is the programmers responsibility to ensure that,

when compiling an instruction using a ''Mode 1" literal, "Dataptr" is set fo the

same page that the commuter pointer register (D register) will be set to when

that instruction is obeyed at run-time.

This is most conveniently arranged by adapting the

recommended standard prograra layout: Before each major section ("Chapter")

of instruction code (which may be one or more S.A, P. blocks) the data which

is associated with that code is declared under *DATA, limited to a single

page (128 words) known as the local data page for that Chapter. The *PROG

forthe chapter follows the code declarations, At each entry point to the

Chapter, the pointer register (D register) is loaded with the address of the

local data page. As far as possible the programmer should avoid changing

the D register within that Chapter. When it is essential to alter the D

register it should be restored to point to the local data page immediately the

operation is complete, Mode 1] literals should not be used in instructions

unless they will always be obeyed with the D register pointing to the local

data pzge.)

(If the same instruction is to be obeyed with varying

pointer-register values ''Mode 1" literals must be avoided and the constants

required located explicitly by the programmer on each page that they will

be required.)

Page 20

(Issue 1}

900
MC2/144

Pt. 2 Sec. 2

Note that literals are shared whenever this is possible

é.g. 4463 and 6 &0077 would share the same Page 0 litesal.

S.A. P, will record the highest location used on each

128-word page for words, (or reserved by skips) and the lowest on each

page used by literals: cverflow will be indicated should these crash.

Page 21
(Issue 1)

700

MG2/144

Pt. 2 Sec. 2

Chapter 6: COMMENTS

A comment starts with a '(' and ends with a matching ')'!. All

characters within the brackets are ignored and a ‘tbracket count" will be kept

80 that matching internal brackets are ignored. However, oniy internal code

characters are permitted (see 1. 4) and 'Stopecde' musi not be used.

Example; (THIS IS A COMMENT (X:=Y+Z;))

6.1 Titles

If the first character inside a comment is a'*! itis

called a title.

Example; (* TITLE:PROGRAM A;21/10/68)

Page 22

{Issue 1)

990
MC2/144

Pt, 2 Sec. 2
Chapter 7: TRIGGER :

The end of a programme is indicated by a irigger. When a
trigger is read, all giobal and no local identifiers are 'available',

Triggers may be of the form % AF, where AF is any located
available address form, thus local identifiers must not be used, but any
identifier declared as global anywhere in the program may be used. When
8A, P, reaches the next stopcede after a trigger it will punch the trigger
on the binary tape and the ‘sumcheck for that tape. When the binary tape
is read into the store under initial orders the programme will be triggered
at the specified address, (provided the sum and parity checks succeed),

If no programme trigger is required the programme should
end % %.

Example of trigger: START

Page 23

(Issue 1)

900
MC2/144

Pt. 2 Sec. 2

Chapter 8: OPEKATING INSTRUCTIONS ;

The S.A. P. Assembler may be used to translate a

number of programs into binary form, and for efficient use of the computer

it is recommended that programs are assembled in batches, for running

at a later stage:- ; ; :

(2) Load the tape 902 SAP in the reader and press the

initial instructions key down. ‘The tape should read up to

the last non-zero character and stdp. lf it stops elswhere

or if there is output on the punch. the tape. has not, been

read correctly, or is a faulty copy. : .

(2) Load the first tape of a SAP program in the reader.

Set up keys 1 to 6 on the control panel (w/g) to control priat-out

as described below. :

(3) Change key 11, the tape will then be read for the first

pass.

(4) Input subsequent types of the same program (if any)

by changing key 11.

(5) When all tapes have been read for pass 1, run-out

‘blanks on the punch, load the first iape of the program in

the reader again and change key 1}.

(6) Re-read subsequent tapes of the pregram (if any)

in the same order as for pass 1, by changing key 11

(7) When all tapes have been read for Pass 2, run-out

tape and tear off. Return to step (2) if more programs are

to be assembled. If errors have occurred it may be

necessary to use the re-start facility, see Chapter 11.

(8S) To run the aszembled program, load the binary

tape produced and enter initial instructions (similar to

step (1)).

Page 24

(Issue 1)

990
MG2/ 144

Pt. 2 Sec. 2

On the first pass of the tapes, S.A.P. wiil punch

information according to the word generator-setting.

(If the 12th (m/s) key of the w/g is down, 8..4.P. will

wait when it next reads the w/g).

If key 1 is down, print-out will be in 920 Telecode, and it

it is up, the 903 Telecode (suitable for Teletype or Flzxowriter - i.e. "Tab"

will come out as "space" and Newline or Linefeed" will be preceded by

"Car. Ret. "). ;

If key 2 ia down, label addresses wili be punched in Cctal.

If key 3 is down they will be punched in decimal.

If key 4 is down, local iabel addresses will be punched. If

key 4 or 5 is down, global label addresses will be puncned.

If key 4,5, or 6 is down, tities wiil be copied and a store map

punched on reaching a trigger. :

After the 2nd pass cf the tapes, a revised store map will be

punched.

The store map obtained at the end cf the 2nd pass will include

literals containing identified addresses not located at tne time of reading on

the first pass; the literals themselves will not be located until they are read

on the 2nd pass.

Errors detected on either pass will be punched when detected

in the Telecode indicated by w/g Key 1, (irrespective of the settings of keys

2-6), and, on the 2nd pass, output of the binary tape will stop.

In the case of a RUN: store overflow on either pass, a store

map will be punched.

Page 25

(Issue 1)

900
MC2/144

Pt. 2 Sec. @

Chapter 9;. MISCELLANEOUS ERRORS

9.1 Locatiuns Reserved for Tape Loader

As locations 0-127 will be mainly workspaces the

binary tape loader occupies locations 16;0 to 49; 0 inclusive.

Any attempt to locate words in locations below the high

end of the loader will be an error, although they may be reserved for

workspaces, €. g- WS=20;0

9.2 Programming through a 4K block

Programme may not cross the boundary of a 4096 word

block of store unless a *PROG or directive ia given. Ary attempt to pregamme

or short jump (unmodified) through a 4K block boundary will give an error

. indication, ,

9.3 Data Page Overlow

When compiling “DATA and using 'skip' to reserve

several locations for workspace, page overflow (provided there are no literals

on the page) will give rise to a warning. (if literals are present, an error

will be given),.

Page 26
_(issve 1)

Chapter 10: ERROR INDICATIONS

Error Ne.

0

1

2

3

4

m
o
e

909
MC2/144

Pt. 2 Sec. 2

Meaning
Unlocated Identifier

General contextual error

Parity error on source tape

Label declared twice

Violation on one of the following

interlocks.

(a) Elements other than comments

(and stopcodes) before *START

directive.

(b) No , *PROG, or *DATA before

the first word or skip.

(c) No globals list before first word.

(d) Two *START directives in one

programme.

Tapes read differently on secénd

pass to first pass.

(a) Different “START directive

(b) More blocks on second pass than

first

(c) Label address different

(d) Identifier not in dictionary or.

second pass

.'Progptr'! or 'Dataptr' incorrectly

located

Address error

Impermissable character

Address form which must be located

on first pass is not

Page 27

(Isse 1}

. 900
MG2/ 144 oe . .
Pt.2 Sec. Z ; a

10 , Number outside permitted range

il Dictionary overflow

12 "More than 95 characters to a line

13 Data page full. (data and literals

crash)."

14 : Attempt to overwrite binary loader

(Lioc's 16;0 to 49;0)

15 ae Prograinme spills over 4096 word

block boundary

16 , . Address form greater than size of

store permitted.

17 No linefsea or newline at start of

tape ;

18 ; Warning that a skip straddles a

page

After an error 0 S.A, P, will continue to read in tape to find

further errors, but the punching of binary tape is inhibited on the second

pass.

Error 18 will not inhibit punching of the hinary tape.

Page 28

{Issue 1}

. 900
v an . . : MC2/144

— Pt. 2 Sec. 2
6

Chapter 11; RESTART FACILITY

After most errors, the S,A, P. assembler stops output of

binary tape on pass 2, but will continue to scaa fox further errors. If an

error does cause a stop, the assembly of the same or ancther programme

may be started again (after such an error, or at any time, e.g. if ihe

wrong tape has been loaded) by setting the interrupt selection switch to

'Manual' and pressing ‘Interrupt’.

S.A, P, will then wait for the first tape of the correct programme

to be loaded and the llth key of the W/G moved from 0 to i.

. Page 29
(Issue 1)

- 900
MC2/144

Pt. 2Sec. 2

Chapter 12; DUMP FACILITY AND CORRECTION COMPILATION

To enable program corrections to be compiled without .

recompiling the whole programme, 8,A,P, provides a dump facility.

To dump &, A. P, and the DICTIONARY of any programme ,

just compiled, move W/G key 10 from 0 to l. (The resuiting tape is a sum

and parity checked binary tape of the relevant areas cf store),

To compile a correction to the programme, load the dump

into store* and compile the correction by making 2 passes in the usual

manner.

The correction only has "access" io the global identifiers of

the original progeamme. It MUST NOT contain a *START directive, but

MUST contain a trigger (or %%). It may be on more than one tape, and

contain more than one block. -

* Of the same or another computer; but if another computer

is used it must have at least as much store as declared in the *START

directive of the original pragramme,

Page 30

(Issue 1)

900
MC2/144

Pt. 2Sec. 2

Chapter 13: STORE USED

: The S.A.P, assembter and its workspace occupies store

from 0;0 to 3600;0 approximately. The rest of the store (as specified for-

the COMP'LE corputer in the * START directive) is used to hold the

dictionary and literal lists. Each dictionary item (global or local identifier)

takes 4 words of store. Fach literal takes one word, and four words are

used for every page into which program or data is stored.

At program run time the whole of the store (specified in
the * START dizective for the RUN computer) is available to the assembled

program, except that only workspace locations may occupy 16;0 to 49:0.

Page 31

(Issue 31)

a
a

a

t
e

N
T

N
e

A
N

A

e
I

O
A
R

B
y
,

