I//? -:/‘

A T gaxtﬁ\"\

Aoz AP

MGC2/144 PROGRAMMING MANUAL
Part 2: - PROGRAMMING LANGUAGES
Section 2: S.A,P. :SYMBOLIC ASSEMBIY PROCRAM
CQNTENTS
_ Page
Chapter 1: INTRODUCTION
1.1 General 1
1.2 -Elements 1
1.3 Separators 1
1.4 Six bit Internail Code 2
1.5 Punching Rules 3
Chapter 2: ADDRESS FORM
2.1 Absolute - 4
2.1.1 Zone-Relative 4
2,1.2 Page Relative 4
2.2 Identifier 4
2.3 Relative to Identifier 5
Page (i)

(Issue 1)

- 900
MC2/144
Pt, 2 Sec., 2

Chapter 3:

Chapter 4

Chapter 5 -

Chapter 6: |

Page (ii)
{Issue 1}

BL.OCKS

3.1 Global Identifier List

3.2 Local Identifiers |

WORDS

4,1 Integers

4.2 Octals

4.3 Fractions

4.4 Special 1

4.5 Special 2

4.6 Special 3

4.7 Special 4

4.8 Instructions
4.8.1 . General
4.8.2 Store-Addressing Funciions

4,2.2.1 Literais
4,8.3 Short Jumps
4 8.4 Modifier Jumps

4,8.5 Shifts

DIRECTIVES

5.1 Start

5.2 Skip

5.3 Prograrnme Pointer

5.4 Data Pointer

5.5 Patch

5.6 Location of Literals
COMMENTS

WO W

10

12
13
13
14
15
16

18
18
18
19
19
20

22

Chapter 7
Chapter 8:

Chapter 9:

Chapter 10:

Chapter 1 1:

Chapter 12;

Chapter 13:

900

. MC2/144
Pt. 2 Sec. 2.

TRIGGER 23
OPERATING INSTRUGTIONS 24
MISCELLANEOUS ERRORS

9.1 Locations reserved for Taps Loader 2_6 .
9.2 Programming through a 4K block 26
9.3 Data page overtlow 26
ERROR INDICATIONS 21
RESTART FACILITY 29
DUMP FACILITY, SORRECTION COMPILATION 30
STORE USED 31

. Page (iii)

{Issue 1)

200
MC2/144
Pt.2 Sec.2

Errata
In the first issue of the S.A.P. assembler, the following restrictions
should be noted. These restrictions will be lifted in later versions,
(1) Page-Relative address Forms (2.1.2) are not permitted.
(2) Shifts (see 4.8.5) must be written in the ferm (4+tnor i4 ;-n.

(3) After an errvor (except E0 amd E158) the assembler wili stop.

Continuation is not possibie.

(4} When the tape of 902 S.A.P, is being loaded. it will stop
several yards short of the end. Thne initial instructions key

MUST be used again to load the last section of tape.

Page {iv)
(Issuc 1}

900
MC2/ 144
Pt. 2 Sec. 2

Chapter 1: INTRODUCTION

1.1 Ge;leral
The 102C /902 Symbolic Assembler Programirne
(5. A.P.) enables programmes to be written in a modified form of machine
code which has two main advantages: ‘
(i) Store locaticns may be referred to by name rather

than absolute addresses.

(i) it is possible to write instructions using constants

without specifying where the constant is stored.

- Programmes written in 5. A, P, cude »re assembled using a
two~pass systerr whereby the source tape is loaded into the computer twice,
and on the second pass a binary tape of-the programme is produced with a
parity and sum-checking loader at the head. This iape can be eatered into

the computer by meaneg of the initial instructions.

1.2 Elements
| The following elenients are permiited in a S, A, P.
programme, anld mﬁst be spaced from each other by ai least one separator:
Woerds |
liabels
Directives, including patches
Global Indentifier Lists
Coruments

Trigger

1.3 Separators
Permissable separators are:
Space
Tab

Newline

Page 1
(Issue 1)

900
MCZ/1_44
Pt 2 Sec_:. 2

There is complete page layout freedom except that there
must be no more than 95 characters on one line. However the separator
'Newline' or 'Linefeed' is not permitted inside an element other than a comment

or global identifier list,

1.4 Six bit Internal Code
S, A, P, operates internally in a 6-bit code, which
includes the following characters, all of wh‘icﬁ are common to 920 and 903
Teiecodes:- !
I-atters Aio Z

Digits 0to9

Layout characters

'Tab' 'Space' 'Newline'

Printing characfers
y b + - * / =
(O[]1%&x *

j!

St-opco-de, (i. e. Hali)

On input; a-z are stored as A-Z
Tab (920 Flexowriter)
Horiz., Tab (903 Flexowriter

Are stored

as '"Tab!

\"""'V"—"'J

‘Newlire (Flexowriter) Are stored

Linefecd (903 Teletype)

as 'Newiine'

Blank N
Are
Erase

_ ignored
Carr. Ret. (503 Teletype) '

Most characters not listnd above are stored as

"impermissible' and give rise to error indications.

Page 2
(Issue 1)

900
MC2/144
P 2 Sec. 2
On output:
If in 903 code: 'Tab" is punched as 'space’

'Newline' is preceded by Carr., Return.
Impermissibles are punched as ‘space'.

1.5. Punrching Rules
A programme may be punched on one or more tapes.
Each tape must end with at least one sepa.-ator and stopccde; tapes may be in

I.S. O. code (7 track plus pé_rity), 903 (4100) tclecode or 920 (503) telecode.

Planks, erases and Carr. Ret's (903 Teletype) will be
ignored and, apart from these characters, the first character of a tape must
be Newline or Linofeed (903 Teletype). When pvrching programs on 1, S, O,

code equipment the sym‘:acl\ (reverse slash) must be used in place of £.

Page 3
(Iscue 1)

900
MC2/144
Pt. 2 Sec. 2

Chapter 2: ADDRESS FORMS

Throughoﬁt the prograrﬁnie the programmer mey refer to a
store location by any of the following forms:

(2) Absolute | |

(b) Identifier

(c) Relative to identifier

as describ2d below.

2.1 Absolute
There are two forms of writing & known absolute

address:- -

2, 1.1 Zone-relative
Form A ; B
. Where A and B are unsigned decimal
integers, and:
O £ A £ 4095 0L BL-7
This specifics address A + 40968
Example: 20; 1 refers to the location with

"decimal address 4116 (octal address 10024)

2.1.2 Page Relative
Form C * D

Where O & C< 127 and O D £ 255.
Thus specifies address C + 128D

Example 20 %] represents the deciial address

148 (octal address 00224).

2.2, Identifier
A name invented b); the programmer consisting of up
to 5 letters or numbers commencing with a lettér. Such a name is calied an
Identifier. (More than 5 characters are permitted, but they will be ignored).

Page 4
(Issue 1)

900

MC2/ 144
Pt, 2 Sec. 2
An identifier may be located in two ways:-
(=) The identifier may be used as a label, by

inserting the identifier (foliowed by a
separator) at any.point in the pregram, Note
that instructions and data (e. g. constants,
work space locations and skips} may be

. labelled, and the Assembler does not aistinguisi.
between instruction labele and datz names,
The identifier is then associated with the
address of the location intc which the nexr
word would be asserr:bled INote also that
more than one identifier cun .'Label.t'he samse
location, and that the ideutifier is located

" whether or not it is actually followed by a

word.

(b) Alternatively an identifier ma.y be located hy
writing it, folloved immediateiy by = and any
located available adaress form.,

e.g. JIM=0;6
FRED=JIM+1
The identifier is thzn associated with the
address written to the right of the equals sign.

Note that this docs not mean ' make the conlent

of JIM become equal to 056",

2,3 Relative to Identifier .
Any ideﬁtiﬁer fcllowed by a signed integer in the range
+ 2047, This will NOT be interpreted MODULO 4095, i.e. if identifier FRED
labels location 4090;6, then FRED + 10 is 4;7 not 4;6.

.~

Page 5
(Issue 1)

900
MC2/144
Pt. 2 Sec. 2

Chapter 3: BLOCKS

A S, A, P, programme will consist of one or more blocks.

3.1 Global Identifier List
~ Identifiers will be clédssed as Global if they are to be
used in two or more blocks. Each block should start with a list of global

idsntifiers used in that block.

The global identifier list rouct be enclosed in square
brackets [and] and each identifier must be sepé.ra_tcd from the rest by at

least one separator.

Example

N W ELOC
[START ERROR W1 V

A global identifier must be Iocated {see 2. 2.) once
and once only in one of the blocks in which it is glebal. Uidocated global
identifiers will be indicated by an error message at the end of the last block

of the pr ogrAam.

3.2 Local Identifiers
An identifier which is not included in the global list
of the block in which it appears is termed a lecal identifier., To avaid
confusion the trained programmer should avoid using that identifier in any
other tlock. However it is perfectly legal for an identifier to be used locally
in several blocks, it will have a different mearing in ea<h,

p]

The same identifier may be used globally and 166311);
provided that it does not appear in the global identifier list of any block
using it 10calljr.

An identifier is said to be available at any point in a
programme if it appears in the global list for the current biock or is local

tn the current block.

A local identifier must be located (see 2. 2) once and

Page €
{issue 1)

900
MC2/144
Pt. 2 Sec. 2

once only in the current block. Unlocated local identifiers will be indicated

at the end of a2 block.

The end of a block is indicated by the global list of the

‘next blocl;, or by a 'trigger’.

Page 7
(Issue 1}

200
MC2/144
Pt. 2 Sec. 2

Chapter 4: WORDS
' Words are the basic elements of a 8. A, P, programfne. After
assembly each S. A, P, word occupi’es one store locatibn in the computer,
Words may be written in.several forms, i.e.
' Integers

Octals

Functions

Special 1

Special 2

Special 3

Special 4

Instructions

All these forms are used to set a pattern of 12 bits in a
computer word, The different forms are provided for the conveniencs of the
programmer, for flexibility in writing and altering programs. In the following
'descriptions the convention Wd [n] represents bit n of the word to be
formed. (Wa [1] represents the least significant and Wd [12] the most
significant binary bit)., AF, AF1, AF2 represent any of the address forms
drscribed in 2.1 to 2. 3. AF[n] rcpresents bhit n of the 15 bit address

associated with AF,

4.1 Integers '
In the range + 2047 to - 2047,
Examples +10 -200 +0
{(If the value -2048 is required it must be punched in
octal form i.'e. &4000),

4.2 Octals
'&' followed by up to 4 digits in the range 0-7. Note
that, for example, ‘&6' is taken to mean '&0006"

Examples: &3777 &0036

Page 8
(Fesue 1)

’ | _ 900
MC2/144
Pt. 2 Sec. 2

4.3 *'ractions

In the range + .9999 to. - . 9999,

Exampleé +.5 -, (;)1-

4.4 Speciall _

It is suggested that 4.4 to 4.7 {Spe;:ials}_ are ommitted
on a first reading of this rnanual.) .-

Special 1 is written in the form "£AF" where AWX
represents any address form. The word is then the nurnerical value of the
specified address, Modulo 4096, that is A

‘Wd [1-12]: = AF [1-12]

'Exé.mples: EFRED

£ FRED+20
£237;1 " (The same value as +237)
£4095;0C (The same value ag -1)

The raddress form is useful for Ivading the B register
with the address of a word which cannot be addressed directly.

Example of use: (The section 4.8.2 on S. A. P.
i.terals should be read before attempting to follow this example). If ARR is
an array in the first zone of store (starting at 1000;9 say) then the following
instructions (placed anywhere in store) will pick up the contents of ARR+10
and store them in ARR+20. ’

0. £ARR
4 0:10
¢ £ARR
5 0:20
4.-5 Special 2 _ '

Of the form "§£AF/" where AF is any address form.

ngAF" is formed as for special 1, then bits 1 to 7 are remeved by the

Assembler. This gives the address of the beginning of the page referenced

by Ak,

Page 9
(Issue 1)

200
MC2/144
Pi. 2 Sec. 2

i. e waf1-7} := 0
- Wd[s-12]:= AF [8-12]
Example &£FRED/

This special is useful seiting the modification registew,
in purticular for saving space by usiﬁg common literals to access different
vaviables. See 4. 8. 2 for a description of S, A, P, literals. If address forrn
FRED+1000 is used then the inprément (+1000) is added to the address of
FRED before the Assembler removes bits 1 to 7.

Example of uce:

; If TIME, VELOC, ACCEL a.i‘e variables in zone 0, 'and
all in the same data pé.ge (not page 0),say: ‘

TIME=512;0

VELOC=513;0

ACCEL=514;0 . -~

- then the following two sets of instruciions placed anywhere in store will
reference these variables, but the set on the left will generate 3 literals

whereas the set on the right will use one comirnn literal with an actual

value of +512.

0 £ TIME 0 £TIME/
40:0 4 [TIME

0 £ VELOGC 0 £VELOG/
400 4 |VELCC
0 £ACCEL 9 £ACCEL/
4 00 4 JACCEL

See 4. 8. 2 for the meaning of 4 /TIME etc.
4.% Special 3
~ Of the form "<AF1l AF2>" where AF1 & AI'2 are any
address forms, spaced by one space character only.

Page 10
{Issue 1)

900 .
MGC2/144
Pt. 2 Sec. 2

This is defined by

W [1-8] = AF2 [8-15]
W [$-11]:= AF1 [13-15]
W [12] := 0

This special .is useful for setting the pointer r;agister
and for sub routine entries,
' Exé.mplés
<START 0;0 >
< 0;0 FDATA>
< INT IPOINT >

_ If the address form 2, 3 is used {(e. g. FRED+1000)
then the increment (+1000) is added to the address of FRED before the

assembler removes the appropriate bits from the address form.

Examples of use

(1) To set up a pair. of words containing the 15
_bit.address of a label for an indirect jump or

sub~routine entry, e. g :

ASTART <START 0;0>

_ £START

Then 11 ASTART would cause program cnntrol to be

transferred o the instruction labelled START,

wherever that vras assembled in store,

(2) To load the pointer register. The instruction
‘sequence: ‘

14 1:65

<0;0 FDATA>
will load the pointer register (D register) to point to
the page in which FDATA is located.

Page 11
(Issue 1)

900

L MC2/144

- Pt, 2 Sec.2

(3) '~ To set up interrupt starting data in locations
128 etc, In locations 128 andc 129 setl:
<INT IPOINT>
L£INT

Then when interrupt occurs control will be transferred
to the instruction labelled INT, ard the D register

set to point to the page in which JPOINT is Jocated.

The identifiers used in specials must be "availabla"

but nced not be "located" at the point of the programmaz.,

4,7 Special 4 7 7
Of the form "£AT =", this may only be used as a
literal in the construction of "iong jumps'. AF may be any address in the
same 4X block as the instruction using the special. It is used to set the
modification register for jumping to A, "£AF = ' will in general be a.
multiple (i) of 256, except where the difference between AE; and the address
of the jump instruction is 128 + a multiple of 256 in which case "§AF =" will

be an odd multiple of 128,

Se2 4. 8. 4 for a description and examnple of the use

of Special 4,

4,8 Instructions
May take scveral forms. These coromence with a
function in the range 0..15, foliowed by at least one separator and a
permitted addrecs form..
(In the forms listed in 4. 8. 2 below only;the function may be preceded by a
).
Y

The identifiers used in addresses must be "availablie

 but need not be ""located" at that point in the programme.

Page 12
(Issue 1}

4.8.1

800
MG2/144
_ Pt. 2 Sec. 2

Mackine Code Form {Decimal Address)

Any instruction may take the form,

¥ - MiN where F, Mand N

represent decimal numbers, and:-

4.8.2

F is the function-in the range 9-.15
M is the mode, ¢ ox

N is the addrecs in the range -127
[

- F must be followed by at least one separator

M, colon and N must not be separated.
ie. WA[1-7] := N
wa[s] =
Wwd[9-12L= F
Examples: 4 0:20
15 1:127

Store - Addressing Functions

Functions (other than velative jumps) which

address the store may be written as

F A or /[F A

where F is the function in decimal, i.e.:-

and A is one of:-

0,1,2,5,4,5,6,10, 11,12 or 13,

(a) An address form with a value in the
range 0 to 127,
e.g. 4 10;0

(b} The form !'/AF' where AF is any address
for‘rn, and /AF represents the least signific,a:"f:
7 bits of AF (i.e. Wd[1-7) := AF [1.7]

e.g. 5 /FRED

Page 13
(Issue i)

Ny

900

MC2/144
"Pt. 2 Sec. 2

(¢) Any literal form, see below

e.g. 4+ 2

I I is preceded by / then the mode bit will

be set in the instruction {i.e. Mode = 1). If F is not preceded by / then the

- instruction will aiways be assembled with Mode 0.

4.8, 2.1 -Literals
- The S, A. . Asserabler provides a

facility for making constants available in a program aad allocating storage

to these constants autornatically, The programmer simply writes the
constant into the address part of the instruction. Such cons’ants are known

as "literals" (or 'S. A, P, literals"), {Note that 902 rachine code does not

.have a literal address form, S, A, P, literals are always placed in a separate

12 bit word, and the addrese of this word is inserted in the instruction

address (bits 1 to 7) by S. A. P,)

A literal muy be written in any of

the wo»d forms listed in Chapter 4 except instructions (4. 8).

Examples of literals used in
instructions: -
4 +2
2 ~1000
6 &0777
12 +.5
4 LFRED
0 LFRED/
4 <0;0 DATA>
0 L£LAB=
literals may only be used afte.r
functions 0,1, 2.4,6, 12 and 13. This restriction gives scme safaguard'

against misuse and accidental overwriting of literals, but it is still possible

Page 14
(Issue 1)

900
MC2/144
Pt, 2 Sec. 2

for a program to corrupt literals by mistake.

" If the function of the instruction is
preceded by / then the iiteral will be allocated an adlress ou the ~urxrent
data page. If it is not prceded by / then the liveral wiil be placed in page 0.
(See 5.6 for further details).

Example,
to load +1 into the A register the
programmer could eithex: - ' A
(a) - arrange to place +1 in gome known location
say 60;0 and write: |

4 0:50 (Absolute address)

(o) or he could write ©1 +1 in his data space and
write instruction:

4 C1 (The exact location of Cl need not be
known)

(c) or he could write:

4 +1

This is easier to read and under-
stand than (a) or {b) and +1 will automaticaily be allocateu space and shared

with any other literals with value +1, & 0001, etc..

4,8.3 Short jumps (Functions 7,8 and 9). Jumps to
addresses which are within + 127 words cf the current addiress may be
written either as:

(a) Fitn or F ;-m

where 11 and m are single cilgit decimal numbers and

¥ is a function digit 7, & or 9.

Page 15
(1ssue 1)

900 | | |
MC2/144 . : . Examples: 10 Y

Pt, 2 Sec. 2 10 X A |
7 3 +2 (Jurap forward 2 if A=0)
| 8 3 -3 (Jurmp back to 10 Y)
(b) F AF
where AF is any address form representing an address
within + 127 of the current address, The mode bit for
a -jump back is inserted automatically {note that /F AF
is illegal in this case).)
+ Examples 8 LAL
7 START !
4,8.4 Modified Jumps ("Leng Jumps")

Functions 7, 8 or 9 may be used to transfer
control to any address in the current zone {i. . the block of 4696 words in
which the jump instruction is placed. The special 4 provides a convenient
means 6f writing jumps which are likely to be.more than 127 words long. To

jump to any address form AF (normally a label) write:-

0 SAF= 8 £AF= 0 £AF=
8§ =AF 7 =AF ' g =AF
Examples:

0 £LAB=! 0 £START+i=| 0 £END=
7

8 =LAB =START+H+] g =END

The raode bit for a jump backwards is inserted auvtomatically, The jump
instruction 7, $ or 9 must not be preceded by /. Howevel the liferal LAF=
may be placed in the current data page by writing

/0 SAF=

4.8.5. Shifte
Shifts may be conveniently written in the form
14 $4nor 14 A -n
where n is an integer. The range of this instx:uction forin is from 14 =32

though 14 4+0tol4 4+31 This instruction form irnplies "multiply by 2Nt

Page 16
(Issue 1)

900

MC2/144
~Pt. 2 Sec. 2
shift lett n places if positive sign. 14 $4n
° : _
shift right n places if negative sign. 14 4-n
Page 17

(Issue 1)

200
MC2/144
- Pt. 2 Sec. 2

Chapter 5; DIRECTIVES
| 5.1 Start
The first element of a programme must be the directive
Ny START' followed by & string specifying the hardware in use.
‘ ‘Examples:- .

*START; 22

*START;21
' - . 1 .
The first and second digits are 3096 x the store cize

of the COMPILE & RUN computers respectively, and this may be in the
range 1-& Thus in the 2nd example above, S, A, P, is being used ¢n a 8192
word compufer, to compils a programme which will run on a 4096 word

computer.
Separators are not permitted within this direciive.

5.2 Skip
The directive ">N ~where N is an unsigned iteger, called
a skip will cause N locaticns to be left undefined (for workspace), (N 4095},

Examg\le: >20

5.3 Pro;grarnnze Pointer
e PROG" Locate words from the address held inan
Agsembler variable known as "Progptr' onwards, incrementing '"Progptr"

by one after each word, and by tke appropriate amount after each skip.

There are two forms of *PROG directive

(2) *PROG |

causes words to be located from the point previously
reached under the last *PROG directive. If *PROG

has not been used "Progptr' will have value 255;0.
(b) %*PROG = AF

where AF is any located available address form.

Page 18
(Issue 1)

900
MC2/144
Pt. 2 Sec. 2

"Progptr" is then set to the value of AF
. Example: *PROG=0;1 -

5.4 Data Poinievr |
Directive *DATA causes words to bs located from the
address held in the Assembler variable known as Dataptr, oanwards. Aftexr
this directive "Dataptr'' iz incremented by one after each word, and by the

appropriate amount afier sach skip.

There are two forms of *DATA directive.

(2) *DATA '

(b) SDATA=AF
where AF is any located available form. In (a) "Datapt." takes its previous
value (initial value undefined}. In cace (b) ”Dataptr“r becomes equal to the
value of AF)
| Exanuple: THDATA=DFRED
(DFRED must have been located before this directive

was reached,e. g. by DFRED = 512;0).

-Note carefully that the S, A, P, variable '""Dataptz' has
no relation to the hardware D register (Pointer register) at Assembly time
or run time. However it may be important for the programmer to form a

relation between the "Dataptr! value at assembly time and the value actually

loaded into the D register at vun time {see 5. 6)

5.5 Patch
"MAFY locate words from the address specified by AF, |

onwards. AF is any located availatle address foim:
Examples: ™ 560;1
TSTARTH20
This facility is a directive to stop placing words consecutively from the
address held in ""Progptx'' or "Dafaptr' but to place them consecutively from
the address indicated by the patch. At the end of a pateh sequence compilation

Page 19
{Issue 1)

900
MC2/f 144
Pti. 2 Sec. 2

of the main programme can be continued by the directive * PROG or * DATA.

5.6 Location of Literals
5. A, P. will locate literals in Mode 0 instructions from

127 downwards. (i.e. in page0).

Litemals preceded by a Mode 1 instructions (e.g. /4 +1)
will be located from the top of the 128-word page indicated by the current

value of "Dataptr', modulo 128 (i. e the current data page).

It is the programmers responsibility to ensure that,
when compiling an irstruction using a '""Mode 1% literal, "Dataptr! is set to the
same page that the compnter pointer register (D register) will be set to when

that instruction is obeyed at run-time.

This is most conveniently arranged by adapting the
recommended standard prograra layout: Before each major section ("Chapter"}
of instruction code (which may be one or more S, A, P, blocks) the data which
is associated with that code is declared nnder *DATA, limited to a single
page (128 words) known as the local data page for that Chapter. The *PROG
for-the chapter follows the code declarations. At each entry point to the
Chapter, the pointer register (I register) is loaded with the address of the
local data page. As far as possible the programmer should avoid changing
the D registexr within that Chapter. When it is essential to alter the D
registér it should be restorzd to poi-nt to the local data page immediately the
operation is complete. Mode 1 literals should not be used in instructions
unless they will always be obeyed with the D register pointing to the local
data. pzge.) ‘

(If the sams instruction is to be obeyed with varying
pointer-register values '""Mode 1" literals must be avoided and the constants
requia;ed located explicitly by the programmer on each page that they will
be yequire;i.)

Page 20
(Issue 1)

900
MC2/144
Pt. 2 Sec. 2

Note that literals are shared vhenever this is possible

€.g. 4463 and 6 &0077 would share the same Page 0 lite.al,

7 S. A, P, will record the highest location used on each
128~word page for words, {or reserved by skips) and the lowest on each

page used by litcrals: cverfiow wiil be indicated should these crach.

Page 21
(Issue 1)

200
MC2/144
Pt. 2 Sec. 2

Chapter 6: COMMENTS

A comment starts with a "(' and ends with a matching ')'. All
characters within the brackets are ig?mred ard a “bracket count' will be kept
a0 that xha.tching internal brackets are ignored. However, oniy internal code
characte.r_s are permitted (see 1. 4) and 'Stopccde’ musi not be vsed.

Example: (THIS IS A COMMENT (X:=Y+Z;))
6.1 Titles

If the first character inside a comment is a'¥*' it is

called a title. _
Example; (* TITLE:PROGRAM A;21/10f68)

Page 22
(Isyue 1)

. 990
MC2/ 44
Pt, 2 Sec. 2

Chapter T7: TRIGGER

The cnd of a programme is indicated by a irigger. When a

trigger is read, all giobal and no local identifiers are 'available',

Triggers may be of the form % AF, where AF is any located
available address form, thus local identifiers mu'st not be used, bui any
identifier declared as global anywhere in the program may be used., When
S.A,P, reaches the next stopeode after a frigger it will punch the trigger |
on the binary tape aad the sumcheck for that tape. When the binary tape
is read into the store under initial orders the programme will be triggered

at the specificd nddress, (provided the sum and parity checks succeed).
If no progromme trigger is required the programme should

end % %.
Example of trigger; %START

Page 22
(Issue 1)

900
MG2/144
Pt. 2 Sec. 2

Chapter 8: OPEKATING INSTRUCTIONS _
' The S. A.P. Assembler may be used to traﬁélate a
number of programs into binary form, and for efficient use of the computer
it is recommended that programs are assembled in batches, for running
at a later stage:- ‘ '
(1) Load the tape 902 SAP in the rcader and press the
initial instr}lcﬁions ey down. Ve tape should read up %o
the last non-zero character and step. ’If it stops elswhare
or if there is output on the punch. the tape };els n:ot._bga_en
read correctly, or is a faulty copy. | & |
(2) Load the first tape of a SAP program in the reader.
Set up keys 1 to 6 on the coatrol panel (w/g) to control priat-out
a.sv-c'iescribed below. ‘
(3) Change key 11, the tape will then be read for the first
pass.
(4) Input subsequent types of the same program (if any)
by changing key 11.
(5) | When all tapes have been read for pass 1, run-out
‘ blanks on the punch, lead the first iape of the ?r;)gram in
the reader again and change key 11.
{(6) Re-read subsequent tapes of the prcgi‘am (if any)
in the same order as for pass i, by changing key 1L
{7) When all tapes have been read for Pass 2, run-out
tape and tear off. Return to step (2) if more programs are
to be assembled. If errors have occurred it may be
necessary to use the re-start facility, see Chapter 11.
(8) To run the assembled program, load the binaxiy

tape produced and enter initial instructions {similar to

step (1))

Page 24

{Issuc 1)

- 990
MC2/ 144
Pt. 2 Sec. 2
~ On the first pass of the tapes, S.A.P., will punch
:i‘nformation according to the word generator setting.

(If the 12th (m/s) .key' of the w/g iz down, £.A.P. will
wait when it next reads the wig)

- if key 1 is down, print-out will be in 9é0 Telecode, and it
it is up, the 903 Telecode (su.‘.tablé for Teletype or Fleoxowriter - i.e. "Tab™
will come out as "space" and "Newline or Linefeed' wili be preceded by
"Car. Ret,). o
- If key 2 is down, label addresses wili be punched in Cctal.
If key 3 is down they will be panched in decimal.

If key 4 1s down, local iahel addres<es will be punched.. I
key 4 or 5 is down, global lakel addresses wiil he puncned. |

| 1f key 4,5, or 6 is down, tit‘;es wiil be copied and a store map
éqnched oﬁ reaching a trigger. '

After the 2nd pass of the tapes, a revised store map will be
punched. '

| The store map obtained at the end cf the ‘an pass will include
literals containing identified addresses not located é.t ire time of reading on
the first pass; the literals themselves will not be located until they are read
on the 2nd pass. ‘

Errors detected on either pass -will be punched when detected
in the Telecode indicated by w/g Key 1, (irrespective of the settings of keys
2-6), é,né, on the 2nd pass, nutput of the binary tape will stop.

In the case of a RUN:stove overflow on either pass, a store

map will be punched.

Page 25
(1ssue 1}

900 o | .
MC2/144 : ‘ o
Pt. 2 Sec. 2 . _

Chapter 9: | MISCELLANEOUS ERRORS
9.1 Locatiuns Reserved for Tape Loader

Ag locations 0-127 will be raainly workspaces the

binary tape loader occupies locations 16;0 tu 49; 0 inclusive.

Any attempt to locate words in locations helow the high
end of the loader will be an exrror, although they may be reserved for

workspaces, e.g. WS=20;0
9.2 Programming through a 4K block

Programme may not cross the boundary of a 4096 word
block of store unless a *PROG or directive is given. Ary attempt to pregammme
or short jump (unmodified) through a 4K block boundary will give an error
. indication, -

9.3 Data Page Overlow

When compiling *DATA and using ‘skip' to reserve
several locations for workspace, page overflow (provided there are no literals
on the page) will give rise to a warning. (If literuls are present, an error

will be given)..

Page 26
(Issue 1)

900
MC2/144
Pt. 2 Sec. 2

Chapter 10:° ERROR INDICATIONS
Error Nec. -+ Meaning
0 _ Unlacated Identifier
General contextual error

Parity error on source tape

Liabel declared twice

N O

Violation on one of the follewing

irterlocks. -

- (2) Elements other than comments
(and stopcodes) before *START
directive.

(b) No , *PROG, or *DATA before
the first word or skip.

(c) No globals list before first word.

(d) Two *START directives in one

programme.

(8,1

Tapes read differently on second
pass to first pé.ss.
(a) Different *START directive
(b) More blocks on second pass than
first
(c) Label address different
{d) Identifier not in dictionary on
second pass A
6 _ "Progptr! or 'Datapir' incorrectly
located
Address error
8 Impermissable character
9 , _ Address form which must be located
on {irst pass is not

:) ’ Page 27
(Issme 1

. 900
MC2/144
Pt.2 Sac. 4.

10
11
12
13

14

15

16

17

18

[

Number outside permitted range
Dictionary overflow

More thar 95 characters to a line
Data page full. (data ard literals
crash).’

Attempt to overwrite binary loader
(Looc's 16;0 to 49;0)

Prograiome spills over 4030 word
block boundary

Address form greater than size of
store permitted.

No linefzec or newline at staxt of
tape '

Warning that a skip straddles a

page

After an error 0 S. A, P. will continuc to read in tape to find

further errors, but the punching of binary tape is inhibited on the second

pass.

Error 18 will not inhibit punching of the hinary tape.

Page 28
(Issue 1)

. . _ 900
- - _ : : S MC2/144
e A Pt. 2 Sec. 2

2

Chapter 11: RESTART FACILITY

After most errors, the 8, A. P. assembler stops output of
binary tape on pass 2, but will continue to scaa fox further errors. I an
error does cause a stop, the assembly of the same or ancther programme
may be started again (after such an erxor, or at any t'me, e.g. if ihe
wrong tape has been loaéed) by setting the interrupt sélecti.on switch to

'Manual' and pressing '"Interrupt’.

S. A, P, will then wait for the first tape of *he correct programrme

to be loaded and the 11th key of the W/G moved from 0 to I,

) : Page 29
: {issue 1

900

MC2/144

Pt. 2 Sec. 2

Chapter 12: DUMP FACILITY AND CORRECTION COMPILATION

To enable program corrections to be compiled without h

recompiling the whole programme, S.A, P, provides a dump {acility.

To dump S, A, P, and the DICTIONARY of a1y programme
just compiled, move W/G key 10 from 0 to 1. (The resulting iape is a sum

and parity checked binary tape of the relevant areas cf store),

To compile a correction to the programme, load the dump
into store* and compile the correction by making 2 passes in the usual

manzier.

The.correction only has "access' io the «lobal identifiers of
the original programme. Tt MUST NOT contain a *START directive, but
MUST contain a trigger {or %%). It may be on more thah one tape, and

contain more than one block, -

* Of the same or another computer; but f another computer
is used it must have at least as much store as declared in the *START

dirvective of the original programre,

Page 30
(Issue 1)

900
MC2/144
Pt. 25ec. 2

Chapter 13: STORE USED

_ | ' - The S.A.P, assembler and its workspace occupies store
from 0;0 to 3600;0 approximately. The rest of the store (as specified for-
the COMPILE computer in the * START directive) is used to hold the
dictionary and literal lists. Each dictionary item {global or local identifier)
takes 4 words of store. Ej‘a,ch ‘literal takes one w_ord, and four words are
used for every page into which i)rogram or data is stored.

At progr'am run time the whole of the store (specified inv

the * START dirersiive for the RUN computer) is available to the asscmbled

program, except that only workspace locations may occup-y 16;0 to 49:0.

Page 31

{Issue 31)

o,

o s i et W LA, LY g AT o, M, 1 A e W T i

